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ABSTRACT
This paper studies the control of multiple UAV�s flying in a
close-coupled formation for the purposes of drag reduction.
A controller design methodology for use in the trail vehicle
in a two-UAV formation is presented. The LQR outer-loop
tracks relative position commands and generates body-axis
rate commands for the inner loop.  The adaptive dynamic
inversion inner-loop tracks these input commands using
only minimal knowledge of the aircraft dynamics.  The
controller is tested in a two-vehicle formation flight
simulation.  Excellent command tracking and performance
are achieved without use of specific knowledge of the
formation flight effects.  Simulation results demonstrate
that the proposed controller design enables the trail UAV to
maneuver in the lead UAV�s wake, and to hold a desired
position in the vortex.

1.0 Introduction
It is known that aircraft with large aspect ratio wings

have better overall aerodynamic efficiency because of
reduction in induced drag for a given lift. However, large
aspect ratio implies large wingspan for a given area. This
means for lightweight design the resulting structure will be
unreasonably flexible and fragile.  A similar improvement
in overall efficiency can be achieved by flying multiple
aircraft in close formation. In an idealized case of n
identical aircraft, each with aspect ratio a, flying in wing-tip
to wing-tip formation the effect would be that of a single
craft with n.a aspect ratio. This kind of drag reduction in
close formation is due to favorable wake-vortex encounters.
Wind tunnel tests have shown that this drag benefit is real
and analytical studies predict that the benefit increases as
additional aircraft are added to the formation

A number of recent studies have examined the
problem of close-coupled formation flight for multiple
aircraft. The formation control of linear aircraft models has
been considered [1-3].  Formation control of two aircraft
using PID feedback has been presented in [1], where it is
assumed that Mach-, altitude-, and heading-hold autopilots
are available, and only the outer-loop problem is examined.
A linear decentralized controller is presented in [2].  In [3],
an optimal peak-seeking controller is presented, which
attempts to find the optimal location for minimum drag
during aircraft flight.  These studies have all been limited to
linear aircraft models.

The modeling of vortex-effects on the aircraft in
close-coupled formation flight is also a subject of
considerable recent interest, and is very important for
effective control system design.  These aerodynamic
coupling effects are highly nonlinear and difficult to model
accurately.  The results of  wind tunnel experiments to
measure forces and moments on a trail aircraft in a vortex
are presented in [4].

This paper examines the controller design problem
for an unmanned aerial vehicle (UAV) flying in the wake of
another, identical UAV for the purposes of drag reduction.
This is a particularly challenging control problem for a
number of reasons.  The vortex generated by the lead
vehicle induces large, nonlinear forces and moments on the
trail (or chase) vehicle. The induced rolling moment, in
particular, is quite large and highly nonlinear, and varies
substantially in both magnitude and sign as the trail aircraft
changes position in the vortex. Additionally, the formation
flight effects are very difficult to measure and to model.
Detailed accurate knowledge of the formation flight effects
is generally not available during flight.

The controller developed here is a two-loop
controller. The outer-loop is an LQR controller that tracks
incoming lateral and vertical position commands and
generates power lever angle and body axis rates commands.
The inner-loop controller is a dynamic inversion controller
with an adaptive neural network that takes body axis p, q, r,
commands as inputs and generates control surface
deflection commands.  The adaptive dynamic inversion
method used in the inner loop is developed in detailed in [5-
8].

This paper presents an effective control design
method for close-coupled formation flight. Simulation
results show that the controller achieves good tracking of
position commands.  The adaptive dynamic inversion inner-
loop tracks the p-, q-, r-commands very well, even though it
uses only very limited information about the system
dynamics.

The organization of this paper is as follows.
Section 2 provides details of the formation flight model
used in the simulation.  In Section 3, the formation flight
control system is discussed, and simulation results are
presented in Section 4.

2.0 Formation Flight Modeling



A six-degree of freedom nonlinear simulation
model has been developed in Matlab/Simulink.   The
nonlinear equations of motion for an aircraft were used, but
the aerodynamic coefficients were held constant. This
restriction does not greatly reduce the validity of the
simulation results because only relatively small maneuvers
(with approximately constant aerodynamic coefficients) are
performed in the simulation results presented.  A table look-
up for the formation flight data was also included,
containing the changes in all force and moment coefficients
as functions of relative X, Y, and Z separation between the
lead and chase vehicles. This model was generated for 1-g
straight and level flight trimmed at Mach 0.8 and altitude
45000 ft.  The relative position of the lead vehicle with
respect to the chase vehicles is expressed in an inertial,
right-handed reference frame with the X-axis out the lead
aircraft�s nose, the Y-axis out the right wing, and the Z-axis
down.

The formation flight data were given in  the
following form:
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where the terms in the parenthesis are provided in table
look-up as a function of relative distances.  It should be
noted that the coupling effect is given as an add-on to six
unperturbed aerodynamic forces and moments.

This model provides a great deal of information
about the vortex effects during close-coupled formation
flight, but extensive modeling work is still required. Time
delay effects and the effects of aircraft rolling motion, as
well as other, smaller, effects still need to be included.

The primary effects of the aerodynamic coupling
are on drag, lift, and rolling moment experienced by the
trail aircraft. The lead aircraft does experience some
aerodynamic coupling, but it is relatively minor.  The
formation flight effects are highly nonlinear, and are
extremely difficult to model completely.

3.0 Formation Flight Control
The formation flight controller presented in this paper is a
controller for the chase vehicle only.  It is designed to track
relative y- and z- position commands while holding the
vehicle�s speed constant. There is an implicit assumption
that the position of the lead vehicle is known so that
appropriate y- and z-commands can be given.  It is
composed of two major parts: an outer-loop LQR controller
and an inner-loop adaptive dynamic inversion controller.
The outer loop takes relative y and z position commands
and generates Power Lever Angle (PLA) commands and
body axis rotation rate commands (p,q,r commands). The
p,q,r commands are input to the inner-loop dynamic
inversion control, which generates control surface
deflections to achieve the desired body axis rotation rates.
3.1 Outer Loop � Optimal LQR design
The outer loop controller is an LQR design, taking lateral
and vertical position commands as inputs and using PLA
and body rates p,q,r as control inputs to achieve the desired
commands. The controller also must maintain stability and
keep the aircraft�s flight speed constant.  The controller is
designed using a linear model of the trail UAV trimmed in
the lead UAV�s wake.  This linear model has states x =
(α, β, V, φ, θ, ψ, y, z)T, where y and z are the lateral and
vertical position of the vehicle in an inertial frame.  The
control inputs to the linear model are the body axis rates
p,q,r and power lever angle, PLA.  The state vector is
augmented with integral error states for V, y, and z, so that
V-error can be minimized and y and z commands can be
tracked.  The system dynamics for the LQR control design
problem are then of the form:

wBBuAxx 1++=! (7)

with

( )Tccc zdtzydtyVdtVzyVx ∫ ∫ ∫ −−−= ,,,,,,,,,, ψθφβα ,

u=(p,q,r,PLA)T, and w=(yc, zc)
T.

The performance index to be minimized is defined as

∫ += dtRzzQxxJ TT )(
2

1
(8)

Where Q and R are diagonal weighting matrices as
described below.

11,...,1),( == iqdiagQ i (9)

4,...,1),( == irdiagR i
Thus, the control, u,  for the outer loop turns out to be:

PxBRu T1−−= (10)
Where P is the positive semi-definite solution of the Riccati
equation.

01 =+−+ − QPBPBRPAPA TT (11)

The weights used for Q and R were:
qi = (100,500,0.1,1,0.1,0.1,5,0.1,10,5,0.5)T,
ri = (1000,500,1000,100)T.
Certain states, particularly angle of attack, sideslip angle,
and the �controls� p, q, and r were weighted very heavily,
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we use an implicit command-following controller with
proportional-integral desired dynamics, so the desired
dynamics ud become:
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The desired dynamics are identical in all three channels,
roll, pitch, and yaw.

If the functions f(x) and g(x) are not known
exactly, then the inversion will not be performed exactly,
resulting in inversion error.  In this case, the resulting
dynamics are

( ) ∆+∫ −+−= dtKKKx cbbcb xxxx 2
4
1

2
1! , (16)

where ∆ is the inversion error.
The nominal dynamic inversion is performed using only a
linear model of the aircraft dynamics, calculated at the
initial trim condition with the trail vehicles flying in the
lead vehicles wake. The nonlinear vehicle dynamics are not
included in the inversion model, and no knowledge of the
formation flight effects are used in the inversion, other than
that incorporated in the linear model calculated at the initial
trim flight condition. This simple dynamic inversion is easy
to implement, but results in large inversion errors, for
which the neural network must compensate.

This adaptive inner-loop controller requires only
minimal knowledge of the vehicle dynamics. As will be
seen in the simulation results, this adaptive inner loop
tracks the desired p,q,r commands very well, even though
the inversion is calculated with very little information about
the formation flight and nonlinear coupling effects.  This
adaptive control strategy was chosen for the inner loop
specifically because of  its ability to achieve tracking with
highly uncertain dynamics.
3.3 Adaptive Neural Network
In this study we use a linear-in-parameters neural network.
An identical network structure was used in all three
channels, with only a slight variation in the inputs.  The
inputs to each network  were the vehicle�s body axis rates p,
q, and r, the squashed control for that control channel, σ(ui),

uddx! uc
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x
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squashing function is to guarantee that the control-related
input to the neural network has a magnitude less than one,
guaranteeing a solution to the algebraic loop around the
network. In this application, all of the network inputs were
excursions from trim values, not the full values of the
states/controls. The basis functions in each network were
linear in the normalized inputs, without cross terms. Thus,
the basis functions used were 1, p, q, r, ∆y, ∆z, σ(ui),
resulting in seven weights and seven basis functions in each
of the three networks.

An important part of any neural network is the rule
governing its adaptation. In the method used here, the
weight adaptation law is derived via Lyapunov stability
analysis, and is dependent on the desired dynamics in the
dynamic inversion. In [8], it is shown that the appropriate
weight-update law for use with an implicit command-
following dynamic inversion controller with desired
dynamics given by (5)

( ) 


 −+−= icicpi wxxbxxw '' ηγ! (17)

where wi is the ith weight of the linear-in-parameters neural
network, γ is learning rate, bi is the ith basis function, and η
is an e-modification factor to unsure that w is bounded.  In
this application, the gains were chosen as γ=2500 and η =
0.05.  In (9), xc� is the output of a first order command filter
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filter is identical to the desired dynamics (5) except for a
stable pole-zero cancellation, and is necessary for the
weight update law to be correct. Further information on the
use of this filter can be found in [8].   This neural network
results in an adaptive controller, with no long-term
memory.  No off-line learning is required with this adaptive
network, because it has no long-term memory.  With the
weight update law given by (9), closed-loop stability and
boundedness of the control signals are guaranteed.

The output of the network is formed by

wbu T
ad = , where b is the vector of basis functions and w

is the vector of weights. Ideally, the output of the network
will exactly match the inversion error, resulting in exact
dynamic inversion.  This output is subtracted from ud in
(15) to compensate for the inversion error.  Then (16)
becomes

( ) adcbbcb udtKKKx −∆+∫ −+−= xxxx 2
4
1

2
1! .(18)

If uad = ∆, then the network exactly matches the inversion
error and the desired dynamics are achieved exactly.

4.0 Simulation Results
The multiloop controller detailed in the previous sections
was tested in the formation flight simulation with two

UAVs flying in formation at mach 0.8 and an altitude of
45,000 ft.  The simulation was initialized with both UAV�s
in a trim condition, with the trail UAV 80 feet behind, 3
feet above, and 33.75 feet to the side of the lead vehicle.
The x-position was chosen so that there would be adequate
longitudinal separation between the two vehicles for safety
purposes. The y-position was chosen to be 90% of the
aircraft wingspan, which is approximately the optimal
position for drag reduction. A small positive z-separation
was chosen because the relative z-position of the trial
vehicle is stable if it is slightly above the lead vehicle. In
this case, increasing altitude of the trail vehicle results in
less induced lift, and a decrease in altitude gives increased
induced lift.

Throughout the simulation the lead aircraft is
simply commanded to continue in straight and level flight,
so no results are shown for the lead vehicle. There are only
very small variations in the lead aircraft�s state, due to the
minor effects of formation flight on the lead vehicle.  One
second after the simulation begins,  the chase vehicle is
commanded to move 5 feet farther away from the lead
vehicle in both lateral and vertical position, and at t=10sec
it is commanded back to its original position in
approximately the optimal position in the lead aircraft�s
vortex.

The inertial Y and Z positions of the chase aircraft
are shown in Figure 2.  For both Y- and Z-commands, the
vehicle achieves the desired position in approximately 4
seconds, with small overshoot and good settling times.  The
controller does an excellent job of tracking the input
commands, even  in the presence of the large nonlinear
effects of formation flight.

The inner-loop responses are shown in Figure 3.
In these plots, both the filtered inputs to the inner loop (e.g.
pc�), and the state responses are shown, but in all three plots
only a single line can be seen. The adaptive inner-loop
dynamic inversion controller achieves almost exactly the
nominal desired dynamics, even though only a single linear
model is used to calculate the inversion. The adaptive
neural network does an excellent job of compensating for
the inversion errors caused by formation flight and other
nonlinearities in the aircraft dynamics.

This is a particularly valuable result, because the
moment effects due to formation flight, particularly the
rolling moment, are large and highly nonlinear.  It is very
difficult to design a linear or non-adaptive controller for the
inner loop, due to the severe changes in the dynamics as the
trail aircraft changes y-position relative to the lead aircraft..
During formation flight, the induced forces and moments
will always be highly uncertain,  making an adaptive
controller that needs little direct knowledge of these forces
and moments critical.  With only minimal knowledge of the
aircraft dynamics (a single linear model), the inner loop
adaptive dynamic inversion achieves the desired dynamics
almost exactly.  Without the adaptive neural network, the
linear dynamic inversion controller cannot control the



aircraft.  Very large tracking errors appear in the inner-loop
and the aircraft quickly goes unstable.

The other states of the trail UAV are not shown
due to space limitations.  There are only small excursions in
angle-of-attack, sideslip angle, flight speed, and the euler
angles.  The trail UAV�s response is well-behaved while
changing position in the vortex of the lead vehicle.  The
relative x-separation between the two vehicles it remains
within 7 inches of the  desired initial separation of 80 feet
throughout the simulation.

5.0 Conclusions and Future Work
This paper presented a formation flight controls system for
UAVs that consisted of an inner-loop adaptive dynamic
inversion controller and an outer-loop LQR controller. This
controller was used in the position control of one UAV
flying in the wake of a second UAV. The adaptive inner-
loop dynamic inversion controller achieved excellent
tracking of p,q,r commands in the presence of large
nonlinear formation flight effects, even though only a single
linear model was used to perform the nominal inversion.
The overall controller performed well, enabling the trailing
UAV to achieve and maintain desired positions in the wake
of the lead UAV.

There are many promising directions for future
work in this area.  A full formation controller still needs to
be developed, directly controlling the longitudinal (x-
direction) separation between the two aircraft, instead of
simply maintaining constant flight speeds.  Also, output
feedback with realistic measurement errors need to be
examined. Another important extension of this work will be
to apply it to formations of three or more aircraft, so that
string stability issues can be examined.  More detailed
models of the formation flight vortex effects are also
needed.  Both the modeling and control work discussed in
this paper also have application to aerial refueling problems
for unmanned vehicles, and this area should also be
pursued.
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Figure 2: Lateral and Vertical Response of Trail UAV
to Relative Displacement Commands
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Figure 3: Inner-loop Command Response during
Maneuver
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